Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755214

RESUMO

Increasing consumption rates of plastics, combined with the waste generated from their production, leads to several environmental problems. Presently, plastic recycling takes account of only about 10% of the plastic waste, which is achieved mainly through mechanical recycling. Chemical recycling methods, such as pyrolysis, could significantly increase overall recycling rates and reduce the need for the production of fossil-based chemicals. Produced pyrolysis oil can be used for the production of benzene, toluene and xylene (BTX) through catalytic upgrading or for the production of alkanes if used directly. Separation of high-value components in pyrolysis oil derived from plastic waste through traditional separation methods can be energy intensive. Organic solvent nanofiltration has been recognised as an alternative with very low energy consumption, as separation is not based on a phase transition. This work focuses on the screening of several (semi-) commercially available membranes using a simplified model mixture of pyrolysis oil obtained from plastics. Based on membrane performance, a selection of membranes was used to treat a feedstock obtained from the direct pyrolysis of plastics. This work shows that currently, commercial OSN membranes have promising separation performance on model mixtures while showing insufficient and non-selective separation at very low flux for complex mixtures derived from the pyrolysis of plastics. This indicates that OSN is indeed a promising technology but that membranes should likely be tailored to this specific application.

2.
Sci Rep ; 12(1): 2435, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165310

RESUMO

Genomic islands (GIs) are horizontally transferred elements that shape bacterial genomes and contributes to the adaptation to different environments. Some GIs encode an integrase and a recombination directionality factor (RDF), which are the molecular GI-encoded machinery that promotes the island excision from the chromosome, the first step for the spread of GIs by horizontal transfer. Although less studied, this process can also play a role in the virulence of bacterial pathogens. While the excision of GIs is thought to be similar to that observed in bacteriophages, this mechanism has been only studied in a few families of islands. Here, we aimed to gain a better understanding of the factors involved in the excision of ROD21 a pathogenicity island of the food-borne pathogen Salmonella enterica serovar Enteritidis and the most studied member of the recently described Enterobacteriaceae-associated ROD21-like family of GIs. Using bioinformatic and experimental approaches, we characterized the conserved gene SEN1998, showing that it encodes a protein with the features of an RDF that binds to the regulatory regions involved in the excision of ROD21. While deletion or overexpression of SEN1998 did not alter the expression of the integrase-encoding gene SEN1970, a slight but significant trend was observed in the excision of the island. Surprisingly, we found that the expression of both genes, SEN1998 and SEN1970, were negatively correlated to the excision of ROD21 which showed a growth phase-dependent pattern. Our findings contribute to the growing body of knowledge regarding the excision of GIs, providing insights about ROD21 and the recently described EARL family of genomic islands.


Assuntos
Biologia Computacional/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genes Bacterianos , Ilhas Genômicas/genética , Salmonella enteritidis/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Integrases/genética , Integrases/metabolismo , Microrganismos Geneticamente Modificados , Mutação , Filogenia , Ligação Proteica , Salmonella enteritidis/metabolismo , Salmonella enteritidis/patogenicidade , Virulência/genética
3.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668764

RESUMO

The type III secretion systems (T3SS) encoded in pathogenicity islands SPI-1 and SPI-2 are key virulence factors of Salmonella. These systems translocate proteins known as effectors into eukaryotic cells during infection. To characterize the functionality of T3SS effectors, gene fusions to the CyaA' reporter of Bordetella pertussis are often used. CyaA' is a calmodulin-dependent adenylate cyclase that is only active within eukaryotic cells. Thus, the translocation of an effector fused to CyaA' can be evaluated by measuring cAMP levels in infected cells. Here, we report the construction of plasmids pCyaA'-Kan and pCyaA'-Cam, which contain the ORF encoding CyaA' adjacent to a cassette that confers resistance to kanamycin or chloramphenicol, respectively, flanked by Flp recombinase target (FRT) sites. A PCR product from pCyaA'-Kan or pCyaA'-Cam containing these genetic elements can be introduced into the bacterial chromosome to generate gene fusions by homologous recombination using the Red recombination system from bacteriophage λ. Subsequently, the resistance cassette can be removed by recombination between the FRT sites using the Flp recombinase. As a proof of concept, the plasmids pCyaA'-Kan and pCyaA'-Cam were used to generate unmarked chromosomal fusions of 10 T3SS effectors to CyaA' in S. Typhimurium. Each fusion protein was detected by Western blot using an anti-CyaA' monoclonal antibody when the corresponding mutant strain was grown under conditions that induce the expression of the native gene. In addition, T3SS-1-dependent secretion of fusion protein SipA-CyaA' during in vitro growth was verified by Western blot analysis of culture supernatants. Finally, efficient translocation of SipA-CyaA' into HeLa cells was evidenced by increased intracellular cAMP levels at different times of infection. Therefore, the plasmids pCyaA'-Kan and pCyaA'-Cam can be used to generate unmarked chromosomal cyaA' translational fusion to study regulated expression, secretion and translocation of Salmonella T3SS effectors into eukaryotic cells.

4.
Membranes (Basel) ; 10(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218012

RESUMO

Electrodialysis (ED) has been recently proposed to desalinate polymer-flooding produced water (PFPW), a byproduct stream from the oil and gas industry rich in charged polymers. However, process performance is limited by fouling occurring on the ion-exchange membranes, particularly on the anionic ones (AEMs). Thus, this study aimed to correlate the properties of different AEMs with their performance while desalinating PFPW, ultimately evaluating their significance when fouling is to be minimized and operation improved. Six stacks containing different homogeneous and commercially available AEMs were employed to desalinate synthetic PFPW during 8-days ED experiments operated in reversal mode. AEMs recovered from the stacks were analyzed in terms of water uptake, ion-exchange capacity, permselectivity, and area resistance, and compared with virgin AEMs. Relatively small changes were measured for most of the parameters evaluated. For most AEMs, the water uptake and resistance increased, while the ion-exchange capacity (IEC) and permselectivity decreased during operation. Ultimately, AEMs with high area resistance were linked to the fast development of limiting current conditions in the stack, so this property turned out to be the most relevant when desalinating PFPW.

5.
Front Microbiol ; 9: 1220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937757

RESUMO

Lipid A is the bioactive component of lipopolysaccharide, and presents a dynamic structure that undergoes modifications in response to environmental signals. Many of these structural modifications influence Salmonella virulence. This is the case of lipid A hydroxylation, a modification catalyzed by the dioxygenase LpxO. Although it has been established that oxygen is required for lipid A hydroxylation acting as substrate of LpxO in Salmonella, an additional regulatory role for oxygen in lpxO expression has not been described. The existence of this regulation could be relevant considering that Salmonella faces low oxygen tension during infection. This condition leads to an adaptive response by changing the expression of numerous genes, and transcription factors Fnr and ArcA are major regulators of this process. In this work, we describe for the first time that lipid A hydroxylation and lpxO expression are modulated by oxygen availability in Salmonella enterica serovar Enteritidis (S. Enteritidis). Biochemical and genetic analyses indicate that this process is regulated by Fnr and ArcA controlling the expression of lpxO. In addition, according to our results, this regulation occurs by direct binding of both transcription factors to specific elements present in the lpxO promoter region. Altogether, our observations revealed a novel role for oxygen acting as an environment signal controlling lipid A hydroxylation in S. Enteritidis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...